In computing, a process is an instance of a computer program that is being sequentially executed[1] by a computer system that has the ability to run several computer programs concurrently.
A single computer processor executes one or more (multiple) instructions at a time (per clock cycle), one after the other (this is a simplification; for the full story, see superscalar CPU architecture). To allow users to run several programs at once (e.g., so that processor time is not wasted waiting for input from a resource), single-processor computer systems can perform time-sharing. Time-sharing allows processes to switch between being executed and waiting (to continue) to be executed. In most cases this is done very rapidly, providing the illusion that several processes are executing 'at once'. (This is known as concurrency or multiprogramming.) Using more than one physical processor on a computer, permits true simultaneous execution of more than one stream of instructions from different processes, but time-sharing is still typically used to allow more than one process to run at a time. (Concurrency is the term generally used to refer to several independent processes sharing a single processor; simultaneity is used to refer to several processes, each with their own processor.) Different processes may share the same set of instructions in memory (to save storage), but this is not known to any one process. Each execution of the same set of instructions is known as an instance— a completely separate instantiation of the program.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment